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Abstract. This paper is concerned with the limit theory of the extreme order statistics derived from random walks. We establish the
joint convergence of the order statistics near the minimum of a random walk in terms of the Feller chains. Detailed descriptions of the
limit process are given in the case of simple symmetric walks and Gaussian walks.

Résumé. Cet article traite de la théorie limite des statistiques d’ordre extrêmes provenant des marches aléatoires. Nous établissons la
convergence conjointe des statistiques d’ordre près du minimum d’une marche aléatoire en termes des chaînes de Feller. Des descrip-
tions détaillées du processus limite sont données dans le cas de marches simples symétriques et des marches gaussiennes.
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1. Introduction

Extreme value theory and order statistics have received considerable interest in probability theory and statistics. They have
a variety of applications including nonparametric tests [37], kernel density estimation [54], physics [39,59], environmental
sciences [33], financial risk analysis [22], and reliability engineering [18]. The most studied case is order statistics derived
from a sequence of independent and identically distributed (i.i.d.) random variables [3,18,48]. We refer to the books [3,
18,48] for examples and related results.

In this paper, following earlier work of Pollaczek [45], Wendel [62], Sparre Andersen [2] and others, we study
the order statistics derived from a random walk S = (Sk,0 ≤ k ≤ n), with S0 = 0, and Sk = ∑k

i=1 Xi with incre-
ments X1,X2, . . . ,Xn that are either exchangeable, or independent and identically distributed (i.i.d.). For 0 ≤ k ≤ n,
let Mk,n = Mk(S0, . . . , Sn) be the kth order statistics derived from the steps (S0, . . . , Sn) of the walk S. So

{0 = S0, S1, . . . , Sn} = {Mk,n,0 ≤ k ≤ n} with M0,n ≤ M1,n ≤ · · · ≤ Mn,n.(1.1)

We also use the notations

Sn := M0,n := min
0≤k≤n

Sk and Sn := Mn,n := max
0≤k≤n

Sk.(1.2)

The fluctuation theory of random walks, developed in the 1950s and 1960s by Sparre Andersen, Spitzer, Baxter, Feller and
Wendel, describes the distributions of these order statistics, especially the minimum, the maximum, and related random
variables such as the random times when these values are attained, either for the first or last time. Development of this
theory was motivated by diverse applications of random walks, first in queueing theory [4,45] and mathematical statistics
[6,26], and more recently in finance [16,32]. The systematic study of large n limit distributions of these functionals of
random walks led via Donsker’s theorem and its generalizations to the fluctuation theory of Brownian motion and Lévy
processes, as reviewed in the recent monographs [8,36].

Beside this mature fluctuation theory of random walks and Lévy processes, there has been a recent resurgence of
interest in the order statistics of random walks in the physics community. The papers [52,53] are typical of this literature,
starting from particular models of random walk such as symmetric walks with continuous increment distributions, and
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making sustained calculations in these models. Many of these calculations recover results that are known in the fluctuation
theory of random walks, even if by now somewhat buried in the literature. But some of these calculations have led to new
limit distributions and asymptotic formulas, whose place relative to the standard fluctuation theory does not seem obvious.
As a case in point, Schehr and Majumdar [52] focused attention on the spacings or gaps between the random walk order
statistics,

Dk,n := Mk,n − Mk−1,n, 1 ≤ k ≤ n.(1.3)

It was observed by Schehr and Majumdar [52, (9)] that if the distribution of X1 has a symmetric density with finite
variance, then as n → ∞ the expected spacing EDk,n has a limit, for which they gave an integral expression involving the
Fourier transform of the density of X1. Some known results, reviewed in Section 3.2, provide explicit descriptions of both
the exact distribution of Mk,n, and its asymptotic distributions in various limit regimes as n → ∞. But much less is easily
found in the literature regarding the large n limit behavior of the differences Dk,n, which involves the joint distributions
of variables in the sequence (M0,n,M1,n, . . .).

Our first result provides a complete description of the joint limit behavior of the order statistics near the minimum of
a random walk, relative to the location of the minimum, for any distribution of the increments of the random walk. The
construction relies on the Feller chains S↑ and S↓, introduced by Feller [24]. The upward Feller chain S↑ with S

↑
0 = 0 is

the sequence of partial sums of those increments Xk of the random walk S with Sk > 0, and the downward Feller chain
S↓ with S

↓
0 = 0 is the sequence of partial sums of those increments Xk of the random walk S with Sk ≤ 0.

Theorem 1.1. Let (Sk, k ≥ 0) be a real-valued walk with exchangeable increments X1,X2, . . ., whose common distribu-
tion satisfies P(X1 = 0) < 1. For 0 ≤ k ≤ n, let Mk,n be the sequence of order statistics defined by (1.1) of the n-step walk
(Sk,0 ≤ k ≤ n), and Wk,n := Mk,n − M0,n. Let 0 = W0 ≤ W1 ≤ · · · be the order statistics

Wk := Mk

({−S↓
n , n ≥ 0

}∪ {
S↑

n , n ≥ 1
})

,(1.4)

derived from the two Feller chains (S
↓
n , n ≥ 0) and (S

↑
n , n ≥ 1) generated by the walk S. Then we have the following:

(i) For each finite K , there is the convergence in total variation of finite-dimensional distributions of order statistics

(Wk,n,1 ≤ k ≤ K)
TV−→ (Wk,1 ≤ k ≤ K) as n → ∞.(1.5)

(ii) For each fixed w > 0, there is the convergence in total variation of laws of counting processes( ∞∑
k=1

1(Wk,n ≤ v),0 ≤ v ≤ w

)
TV−→

( ∞∑
k=1

1(Wk ≤ v),0 ≤ v ≤ w

)
as n → ∞.(1.6)

As will be seen in the proof of Theorem 1.1, by letting αn := max{k ≤ n : Sk = M0,n}, the values Wk derived from
(−S

↓
n , n ≥ 0) represent contributions to the limiting process from values of Sj with j at or before time αn, while the

values Wk derived from (S
↑
n , n ≥ 1) are contributions from strictly after time αn. See also [61, Theorem 4] for a related

result.
Recall from (1.3) that Dk,n := Mk,n − Mk−1,n = Wk,n − Wk−1,n. Observe the reversibility of spacings

(Dn,n, . . . ,D1,n)
d= (D1,n, . . . ,Dn,n),(1.7)

which follows from the well known duality relation (Sn −Sk,0 ≤ k ≤ n)
d= (Sk,0 ≤ k ≤ n), implied by the reversibility of

increments (Xn, . . . ,X1)
d= (X1, . . . ,Xn). Combining Theorem 1.1 with some known results (see Lemma 3.1) regarding

the distributions of Mk,n yields the following proposition.

Proposition 1.2. With notations as in Theorem 1.1, and X := X1 the generic increment of the walk with exchangeable
increments, we have:

(i) For each finite K , there is the convergence in total variation of finite-dimensional distributions of gaps of order
statistics

(Dk,n,1 ≤ k ≤ K)
TV−→ (Dk,1 ≤ k ≤ K) as n → ∞,(1.8)
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where Dk := Wk − Wk−1. Moreover, these convergences hold together with convergence of pth moments for every 0 <

p < ∞ such that E|X|p < ∞.
(ii) If E|X| < ∞, then for each fixed k = 1,2, . . .

lim
n→∞EDk,n = EDk = ES+

k

k
+E

[
E(X|E)−

]
,(1.9)

where E is the exchangeable σ -field, and x+ := max(x,0) and x− := −min(x,0) for all real x. We have limk→∞ EDk =
E|E(X|E)|. Assume further that EX2 < ∞ and E(X|E) = 0 almost surely. Then

EDk ∼ E

√
E(X2|E)√

2π
k−1/2 and EWk ∼ E

√
E
(
X2|E)√2k

π
as k → ∞.(1.10)

The distribution of (Wk, k ≥ 0) is further simplified in the case of a random walk, due to the following description of
the Feller chains in that case, by Bertoin [7].

Theorem 1.3 ([7]). Let (Sk, k ≥ 0) be a random walk with i.i.d. increments X1,X2, . . ., whose common distribution
satisfies P(X1 = 0) < 1. Then the two Feller chains S↑ and S↓ are independent, and both are Markov chains, with
stationary transition probabilities given by

p↑(x, dy) := P
(
x + S

↑
1 ∈ dy

)= 1(y > 0)
h↑(y)

h↑(x)
P(x + X1 ∈ dy), x ≥ 0,(1.11)

p↓(x, dy) := P
(
x + S

↓
1 ∈ dy

)= 1(y ≤ 0)
h↓(y)

h↓(x)
P(x + X1 ∈ dy), x ≤ 0,(1.12)

where h↑(x) := E(
∑τ+−1

k=0 1(Sk > −x)) with τ+ := inf{n > 0 : Sn > 0}, and h↓(x) := E(
∑τ−0−1

k=0 1(Sk ≤ −x)) with
τ−0 := inf{n > 0 : Sn ≤ 0}.

The following corollary is an immediate consequence of Theorem 1.1 and Tanaka’s construction of Feller’s chains of
a random walk (see Proposition 2.3).

Corollary 1.4. For a random walk with i.i.d. increments whose distribution is symmetric and continuous, let τ+ :=
inf{n > 0 : Sn > 0} and τ−0 := inf{n > 0 : Sn ≤ 0}, with the conventions that Sτ+ = ∞ if τ+ = ∞ and −Sτ−0 = ∞ if
τ−0 = ∞. The common distribution of the lowest gap D1,n := M1,n − M0,n and the topmost gap Dn,n := Mn,n − Mn−1,n

converges in total variation norm as n → ∞ to the distribution of D1 = W1 defined by

P(W1 > w) = P(Sτ+ > w)P(−Sτ−0 > w), w > 0.(1.13)

In the case of a random walk, Proposition 1.2 specializes to the following corollary.

Corollary 1.5. Let (Sk, k ≥ 0) be a random walk with i.i.d. increments X1,X2, . . ., whose common distribution satisfies
P(X1 = 0) < 1. Let X := X1 be the generic increment of the random walk. We have:

(i) Proposition 1.2(i) holds.
(ii) If E|X| < ∞ and EX = μ, then for each fixed k = 1,2, . . .

lim
n→∞EDk,n = EDk = ES+

k

k
+ μ−.(1.14)

Assume further that μ = 0 and EX2 = σ 2 < ∞. Then

EDk ∼ σ√
2π

k−1/2 and EWk ∼ σ

√
2

π
k1/2 as k → ∞.(1.15)

As mentioned earlier, Schehr and Majumdar [52] showed the existence of the limit (1.14) for symmetric distributions
of X with a density, with a more complicated description of the limit by a Fourier integral. Their result reduces to the
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simpler formula in (1.14) by application of the formula [11,28,60]

E|X| = 2

π

∫ ∞

0

(
1 −EeitX

)dt

t2

for any symmetric distribution of X.
Another interesting question is how fast (Wk,n,1 ≤ k ≤ K) and (Dk,n,1 ≤ k ≤ K) converges as n → ∞ to the limiting

processes (Wk,1 ≤ k ≤ K) and (Dk,1 ≤ k ≤ n) respectively. The following proposition quantifies a convergence rate in
(1.5) and (1.8) for a random walk with i.i.d. increments which is continuous, and satisfies some moment condition. We
leave the question of whether the established rate is optimal as open problem.

Proposition 1.6. Let (Sk, k ≥ 0) be a random walk with i.i.d. increments X1,X2, . . ., whose distribution is symmetric and
continuous, with Eeθ |X1| < ∞ for some θ > 0. With notations as in Theorem 1.1 and Proposition 1.2, let TV(K,n) be the
total variation distance between the distributions of the two sequences in (1.5) or (1.8). Then for each finite K, there is a
constant CK > 0 such that

TV(K,n) ≤ CKn− 1
4 .(1.16)

It is well known that in the setting of Corollary 1.4, the distributions F+ and F−0 of the strict ascending and weak
descending ladder heights Sτ+ and Sτ−0 with supports in (0,∞) and (−∞,0] respectively, are uniquely determined by
the Wiener–Hopf equation F+ + F−0 − F+ ∗ F−0 = F , where F is the distribution of increments. The joint limit law
of (W1,W2) can also be described just as explicitly for a general increment distribution, and in principle so can that of
(W1,W2,W3) and so on, but these general descriptions become more complex as the number of variables increases. Three
special cases for which much more detailed descriptions are possible are:

(i) simple random walk, with increments Xi = ±1 and P(Xi = 1) = P(Xi = −1) = 1/2;

(ii) symmetric Gaussian random walk, whose increments have the common distribution P(Xi ∈ dx) = (2πσ 2)− 1
2 ×

exp(− x2

2σ 2 ) dx for some σ 2 > 0;

(iii) symmetric Laplacian random walk, whose increments have the common distribution P(Xi ∈ dx) = (2b)−1 ×
e−b|x| dx for some b > 0.

In this paper we will illustrate results for walks with simple ±1 and symmetric Gaussian increments. The case of
symmetric Laplacian increments involves further symmetries and will be treated in a separate paper [44]. The key to the
analysis of these random walks is to embed them into a Brownian motion. By the Skorokhod embedding [55], every
random walk with mean zero and finite variance σ 2 per step may be embedded in a Brownian motion (B(t), t ≥ 0) as
Sk = B(Tk) where 0 = T0 ≤ T1 ≤ · · · is an increasing sequence of stopping times of B , with the (Tk − Tk−1, k ≥ 1) i.i.d.
as T1, and ETk = kσ 2. In the above three examples,

(i) Simple symmetric walk, with Tk = inf{t > Tk−1 : |Bt − BTk−1 | = 1};
(ii) symmetric Gaussian random walk, with Tk = σk;

(iii) symmetric Laplacian random walk, with Tk = 2b−2γk , where γk = ∑k
i=1 εi for a sequence of independent stan-

dard exponential variables.

The upward Feller chain (S
↑
k , k ≥ 0) derived from a simple symmetric walk was studied by Pitman [43] who gave

a number of constructions of this Markov chain, including the embedding S
↑
k = R3(Tk), k ≥ 0 where R3 is a BES(3)

process, and Tk is the succession of random times at which R3 hits integer values, defined inductively by T0 := 0 and
Tk+1 := inf{t > Tk : |R3(t) − R3(Tk)| = 1}. It follows from this embedding, and the easily established almost sure con-
vergence Tn/n → 1 as n → ∞, that there is the scaling limit(

n−1/2S↑
un,u ≥ 0

) d−→ (
R3(u),u ≥ 0

)
(1.17)

in the sense of functional limit theorems in the path space C[0,∞), that is the same sense in which (n−1/2Sun,u ≥ 0)

converges in distribution to Brownian motion. See [27] for embedding the Feller chain (S
↑
k , k ≥ 0) derived from a random

walk with a more general increment distribution in a BES(3) process.
Organization of the paper: In Section 2, we recall basic constructions of the Feller chains. In Section 3, we study

the extreme order statistics derived from general random walks. There Theorem 1.1, Proposition 1.2, Corollary 1.4 and
Proposition 1.6 are proved. Section 4 provides detailed descriptions of the limit process of order statistics derived from
simple symmetric random walks. Section 5 describes the limit process of order statistics derived from Gaussian random
walks.
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2. Feller chains – old & new

In this section we present some basic constructions in the theory of conditioned random walks. This theory was sys-
tematically developed in the 1980’s and 1990’s by Tanaka [58], Bertoin and Doney [7,9] following earlier contributions
by Feller [24], Williams [63,64] and Pitman [43]. Conditioned random walks also appear in the study of localization of
random polymers, see e.g. Comets [15, Chapter 7].

Let S0 = 0 and Sn := X1 + · · · + Xn be a real-valued walk with exchangeable increments X1,X2, . . .. Let (S
↑
k , k ≥ 0)

and (S
↓
k , k ≥ 0) be the upward and downward Feller chains derived from the walk (Sk, k ≥ 0) defined in the Introduction.

These random sequences with a finite time horizon n were introduced by Feller [24, XII.8, Lemma 3] to provide a
combinatorial proof of Sparre Andersen’s equivalence principle [1]. Formally, the upward Feller chain S↑ is the sequence
of partial sums of those increments Xk of the walk S with Sk > 0, and the downward Feller chain S↑ is the sequence of
partial sums of those increments Xk of the walk S with Sk ≤ 0 Let N+

n := #{k ≤ n : Sk > 0} and N−
n := n − N+

n . The

above construction gives partial sum processes (S
↑
k ,0 ≤ k ≤ N+

n ) and (S
↓
k ,0 ≤ k ≤ N−

n ) of random lengths N+
n and N−

n

respectively. Then there are identities

N+
k = N+

k−1 + 1(Sk > 0), N−
k = N−

k−1 + 1(Sk ≤ 0), Sk = S
↑
N+

k

+ S
↓
N−

k

.(2.1)

It follows that for each fixed n, the original sequence (Sk,0 ≤ k ≤ n) is encoded as a measurable function of the two Feller
chains (S

↑
k ,1 ≤ k ≤ N+

n ) and (S
↓
k ,1 ≤ k ≤ N−

n ). The final values of the two chains give the value of Sn = S
↑
N+

n
+ S

↓
N−

n
.

This also yields the value of 1(Sn > 0), hence the values of N+
n−1 and N−

n−1 by (2.1) for k = n, then the value of Sn−1 by
(2.1) for k = n − 1, and so on recursively down to the value of S1.

Lemma 2.1 ([24]). Assume that (Sk,0 ≤ k ≤ n) is a walk with exchangeable increments, and let αn := max{k ≤ n : Sk =
Sn}. Whatever the common distribution of exchangeable increments of S, there is the identity in distribution(

(Sαn+k − Sαn,0 ≤ k ≤ n − αn), (Sαn−k − Sαn,0 ≤ k ≤ αn)
)

d= ((
S

↑
k ,0 ≤ k ≤ N+

n

)
,
(−S

↓
k ,0 ≤ k ≤ N−

n

))
.(2.2)

Assume further that the increments X1,X2, . . . are independent.

(i) The common distribution of αn and N−
n is given by

P(αn = 	) = P
(
N−

n = 	
)= P

(
	⋂

k=1

{Sk ≤ 0}
)
P

(
n−	⋂
k=1

{Sk > 0}
)

.(2.3)

(ii) Given αn = 	, the common distribution of each pair of path fragments displayed in (2.2) is that of two indepen-
dent path fragments distributed as (Sk,0 ≤ k ≤ n − 	) given

⋂n−	
k=1{Sk > 0} and (−Sk,0 ≤ k ≤ 	) given

⋂	
k=1{Sk ≤ 0}

respectively.

Here the main results involve Feller’s chains with infinite time horizon. Observe that the first n steps of the walk
(Sk,0 ≤ k ≤ n) define only the first N+

n steps of S↑ and the first N−
n steps of S↓. As n ↑ ∞, it is obvious that N+

n ↑ N+∞
and N−

n ↑ N−∞ for some limiting random variables N+∞ and N−∞ with values in {0,1, . . . ,∞}. When N+∞ = ∞ there are
infinitely many Xk with Sk > 0, and the infinite horizon upward chain S↑ has this infinite list of X-values as increments.
Whereas if N+∞ < ∞, there is the convention that S

↑
k = ∞ for k > N+∞. So the random variable N+∞ is encoded in S↑

as N+∞ = inf{n : S
↑
n+1 = ∞} with the convention that inf∅ = ∞. Similar remarks apply to the definition of S↓. The

following lemma summarizes some basic facts about Feller’s chains.

Lemma 2.2 ([7,24]). Assume that (Sk, k ≥ 0) is a real-valued walk with exchangeable increments X1,X2, . . ., whose
common distribution satisfies P(X1 = 0) < 1.

(i) There is the convergence in total variation as n → ∞(
(Sαn+k − Sαn,0 ≤ k ≤ n − αn), (Sαn−k − Sαn,0 ≤ k ≤ αn)

) TV−→ (
S↑,−S↓),(2.4)

where αn := max{k ≤ n : Sk = Sn}.
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(ii) Each Feller chain is upwardly transient:

lim
n→∞S↑

n = lim
n→∞−S↓

n = ∞ almost surely.

Assume further that the increments X1,X2, . . . are independent. We have the following:

(iii) The two Feller chains S↑ and S↓ are independent.
(iv) Each of the Feller chains S↑ and −S↓ is a Markov chain with stationary transition probabilities, with state space

[0,∞] and ∞ as an absorbing state.
(v) The chain S↑ is a Doob h-transform of the original random walk S stopped on first reaching (−∞,0], for

the super-harmonic function h↑(x) := E(
∑τ+−1

k=0 1(Sk > −x)) where τ+ := inf{n > 0 : Sn > 0}; while the chain S↓ is
a Doob h-transform of the original random walk S stopped on first reaching (0,∞), for the super-harmonic function

h↓(x) := E(
∑τ−0−1

k=0 1(Sk ≤ −x)) where τ−0 := inf{n > 0 : Sn ≤ 0}.

Note that neither [7] nor [24] mentions the convergence in total variation (2.4). It is only stated in [7] that the left side
of (2.4) converges in distribution to its right side. However, the argument in [7], as is clear in the proof of Theorem 1.1,
implies the convergence in total variation.

An interesting issue which does not seem to have been addressed in the literature is whether the path of the original
walk (Sk, k ≥ 0) can be recovered almost surely from the pair of infinite horizon Feller chains (S↑, S↓). While this turns
out to be the case, it is not a trivial consequence of the fact that the walk {Sk,0 ≤ k ≤ n} can be recovered from the
finite horizon chain segments (S

↑
k ,1 ≤ k ≤ N+

n ) and (S
↓
k ,1 ≤ k ≤ N−

n ). As discussed before, the finite segment recovery
involves a reverse induction using the values of N+

n and N+
n to progressively determine the values of N+

k and N−
k , and

hence Sk = S
↑
N+

k

+ S
↓
N−

k

for smaller values of k. But given the entire paths of the two infinite horizon chains, there is no

obvious way to determine for any particular n how the n steps are split into N+
n and N−

n , so no obvious beginning for an

inductive recovery. This difficulty is avoided by an alternative expression for the recovery of (Sk, k ≥ 0) from (S
↑
k , k ≥ 1)

and (S
↓
k , k ≥ 1) via the ascending and descending chain segments.

To illustrate, we first describe how (Sk,0 ≤ k ≤ n) for any fixed n is recovered from (S
↑
k ,1 ≤ k ≤ N+

n ) and (S
↓
k ,1 ≤

k ≤ N−
n ) by such an encoding. In terms of the segment (S

↑
k ,0 ≤ k ≤ N+

n ), define the sequence of future minimum times

inductively by G
↑
0 = 0 and for j ≥ 1,

G
↑
j := max

{
k > G

↑
j−1 : S↑

k = min
G

↑
j−1<i≤N+

n

S
↑
i

}
,(2.5)

with the convention that min∅= 0 and max∅ = ∞. Let J
↑
n := max{j : G↑

j < ∞} be the total number of future minimum

times derived from the segment (S
↑
k ,0 ≤ k ≤ N+

n ). So G
↑
j < ∞ (which is well-defined) if and only if J

↑
n ≥ j . By

construction, G
↑
1 is the last time that the minimum of S↑ over {1, . . . ,N+

n } is attained. If G
↑
1 = N+

n then J
↑
n = 1, else G

↑
2

is the last time after G
↑
1 that the minimum of S↑ over {G↑

1 + 1, . . . ,N+
n } is attained. If G

↑
2 = N+

n then J
↑
n = 2, else · · · ,

and so on. Now the idea is to decompose (S
↑
k ,0 ≤ k ≤ N+

n ) into the sequence of ascending chain segments(
S

↑
G

↑
j−1+k

,0 ≤ k ≤ G
↑
j − G

↑
j−1

)
, 1 ≤ j ≤ J↑

n .(2.6)

Note that in this construction,

(i) 0 = G
↑
0 < G

↑
1 < · · · < G

↑
J

↑
n

= N+
n ;

(ii) 0 = S
↑
G

↑
0

< S
↑
G

↑
1

< · · · < S
↑
G

↑
J
↑
n

= S
↑
N+

n
;

(iii) the increments of each segment of the original walk (Sk,0 ≤ k ≤ n) over positive excursions, i.e. segments
(SU+i ,0 ≤ i ≤ V ) with SU ≤ 0 and SU+k > 0 for k ≤ V , and either SU+V +1 ≤ 0 or U + V = n and Sn > 0, are encoded
in S↑ as the concatenation of increments of some consecutive sequences of future minimum segments.

Now a similar construction with S↓ yields a sequence of future maximum times G
↓
j , 0 ≤ j ≤ J

↓
n , and a corresponding

sequence of descending chain segments derived from (S
↓
k ,0 ≤ k ≤ N−

n ). The increments of the original walk over negative
excursions are encoded in S↓, with analogs of (i)–(iii) above, except that if P(Sk = 0) > 0 for some k there is the
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complication that instead of all strict inequalities in (ii), the first inequality might be an equality, so the analog of (ii) is
slightly different:

(ii’) 0 = S
↓
G

↓
0

≥ S
↓
G

↓
1

> · · · > S
↓
G

↓
J
↑
n

= S
↓
N−

n
.

The issue of recovering the first n segments of the original walk (Sk,0 ≤ k ≤ n) from the two finite chains (S
↑
k ,1 ≤ j ≤

N+
n ) and (S

↓
k ,1 ≤ j ≤ N−

n ) is now framed as one of determining the order in which the J
↑
n ascending chain segments

and the J
↓
n descending chain segments are riffled together as they appeared in the original path. According to the finite n

recovery by reverse induction, there is one and only one possible order to do this riffling. Moreover, it can be seen directly
from the ascending and descending chain segments what this order is: it is the only order of arrangement of these segments
in which the final values of the segments are weakly increasing in absolute value, with the additional requirement that if
two segments have the same absolute final value, the ascending segment is placed first.

The extension of the definition of ascending and descending chain segments to the infinite horizon is obvious. The idea
is to recover the infinite walk (Sk, k ≥ 0) from (S

↑
k ,1 ≤ k ≤ N+∞) and (S

↓
k ,1 ≤ k ≤ N−∞) via ascending and descending

chain segments. Thus, it does not require the values of N±
n for any particular n. The result is stated as follows.

Proposition 2.3. Let (Sk, k ≥ 0) be a real-valued walk, and (S
↑
k ,0 ≤ k ≤ N+∞) and (S

↓
k ,0 ≤ k ≤ N−∞) be the associated

upward and downward Feller chain respectively. Define the future minimum times G↑ of S↑ by G
↑
0 := 0 and

G
↑
j := max

{
k > G

↑
j−1 : S↑

k = min
G

↑
j−1<i≤N+∞

S
↑
i

}
,

with the convention that min∅ = 0 and max∅ = ∞, and the sequence of ascending chain segments by(
S

↑
G

↑
j−1+k

,0 ≤ k ≤ G
↑
j − G

↑
j−1

)
, 1 ≤ j ≤ J

↑∞,

where J
↑∞ := max{j : G↑

j < ∞} is the number of future minimum times derived from (S
↑
k ,0 ≤ k ≤ N+∞). Similarly, define

the future maximum times G↓ of S↓, and the sequence of descending chain segments. Then the increments of S are
recovered from its sequence of ascending and descending chain segments according to the rule:

(i) Place the increments from these segments in the order of least absolute final values of the segments.
(ii) If two segments have the same absolute final value, place the ascending segment first.

Assume further that (Sk, k ≥ 0) is an oscillating random walk with i.i.d. increments whose distribution is symmetric and
continuous. Then N+∞ = N−∞ = ∞ almost surely, and there are the identities in distribution((

G
↑
j , S

↑
G

↑
j

)
, j = 1,2, . . .

) d= ((
τ+
j , Sτ+

j

)
, j = 1,2, . . .

)
,(2.7)

((
G

↓
j , S

↓
G

↓
j

)
, j = 1,2, . . .

) d= ((
τ−0
j , S

τ−0
j

)
, j = 1,2, . . .

)
,(2.8)

where ((τ+
j , Sτ+

j
), j = 1,2, . . .) is the sequence of strictly ascending ladder indices and heights of S, and ((τ−0

j , S
τ−0
j

),

j = 1,2, . . .) is the sequence of weakly descending ladder indices and heights of S. In particular, (τ+
j , Sτ+

j
) is the sum of

j independent copies of the first strictly ascending ladder index and height (τ+, Sτ+) with τ+ := inf{n > 0 : Sn > 0}, and
(τ−0

j , S
τ−0
j

) is the sum of j independent copies of the first weakly descending ladder index and height (τ−0, Sτ−0) with

τ− := inf{n > 0 : Sn ≤ 0}.

Proof. The first part of this proposition follows the finite n recovery algorithm described in the preceding paragraph. The
second part is a consequence of Tanaka’s construction [58] of (−S)↑ from the walk S, or equivalently the Feller’s chains
(S↑, S↓). �

3. Order statistics of general random walks

In this section we prove the main results, Theorem 1.1, Proposition 1.2, Corollary 1.4 and Proposition 1.6 regarding the
order statistics of general random walks.
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3.1. Proof of Theorem 1.1

Let 0 = S̃0,n, S̃1,n, . . . , S̃n,n be the random sequence with increments obtained by concatenation of the first N−
n increments

(X
↓
1 , . . . ,X

↓
N−

n
) of S↓ in reverse order, followed by the first N+

n increments (X
↑
1 , . . . ,X

↑
N+

n
) of S↑ in their original order:

(X̃1,n, . . . , X̃n,n) := (
X

↓
N−

n
, . . . ,X

↓
1 ,X

↑
1 , . . . ,X

↑
N+

n

)
.

By Lemma 2.1, (S̃k,n,0 ≤ k ≤ n)
d= (Sk,0 ≤ k ≤ n). Regard the sequence (Wk,n,0 ≤ k ≤ n) as a measurable function,

say 
n, of (Sk,0 ≤ k ≤ n). Then for each fixed n there is the identity of joint distributions

(Wk,n,0 ≤ k ≤ n)
d= (W̃k,n,0 ≤ k ≤ n),(3.1)

where the r.h.s. is 
n(S̃k,n,0 ≤ k ≤ n).
Observe that as n varies, the two sequences displayed in (3.1) develop by very different stochastic mechanisms. For

instance, on the l.h.s., as n increments to n + 1, if Xn+1 is sufficiently large negative, leading to a sum Sn+1 with
Sn+1 = M0,n − a with a > 0, then M0,n+1 = M0,n − a, so W1,n = a and Wk+1,n+1 = a + Wk,n for every 1 ≤ k ≤ n. In
particular, if the process of downward ladder indices of S is recurrent, this will happen infinitely often, and for any fixed
K as n varies the values of (Wk,n,0 ≤ k ≤ K) will keep changing as n → ∞. In contrast, the right side of (3.1) evolves
in a completely different, and much simpler way, which is the key point of this argument. As n increments to n + 1, all
that happens on the r.h.s. of (3.1) is that one of the two partial Feller chains (S

↑
k ,0 ≤ k ≤ N+

n ) and (S
↓
k ,0 ≤ k ≤ N−

n )

has its length incremented by 1, with the consequence that (X̃1,n+1, . . . , X̃n+1,n+1) is obtained from (X̃1,n, . . . , X̃n,n) by
either prepending or appending Xn+1 according to whether Sn+1 ≤ 0 or Sn+1 > 0. If Sn+1 ≤ 0 then (W̃k,n,1 ≤ k ≤ n+ 1)

is derived by insertion of the value −S
↓
N−

n+1
into the previous list (W̃k,n,1 ≤ k ≤ n), while if Sn+1 > 0 then (W̃k,n,1 ≤

k ≤ n + 1) is derived by insertion of the value S
↑
N+

n+1
into the previous list. In either case, the previous list is updated

by insertion of a single element, which finds its place somewhere in the previous list. All lower values in the list remain
unchanged, while the indexing of all higher values in the list is pushed up by 1. In terms of the associated point processes
on [0,∞), all that happens is that a single point is inserted somewhere in the configuration of n points to make a new
configuration of n + 1 points. As a consequence, for each fixed k, with probability one,

W̃k,n for n ≥ k is weakly decreasing in n and eventually equal to its limit Wk .(3.2)

To be more precise, let

M>n := min
({

S
↑
j , j ≥ N+

n

}∪ {−S
↓
j , j ≥ N−

n

})
.(3.3)

Let TV(K,n) be the total variation distance between the distributions of the two sequences displayed in (1.5). Then in
view of (3.1) there is the coupling bound [38, (2.6), p. 12]:

TV(K,n) ≤ P(W̃n,k = Wk for some 1 ≤ k ≤ K) ≤ P(M>n ≤ WK),(3.4)

since if M>n > WK then every insertion after time n does not change the value of any W̃k,n with 1 ≤ k ≤ K , and hence
W̃k,m = Wk for all m ≥ n. Now by Lemma 2.2, the sequences S↑ and −S↓ are upward transient, which implies that
P(M>n ↑ ∞) = 1. So the probability bound in (3.4) decreases to 0 as n → ∞. This gives part (i). The proof of (ii) is in
the same vein.

3.2. Proof of Proposition 1.2

The key to the analysis of Proposition 1.2 relies on the following representation of the order statistics Mk,n, which is due
to Pollaczek [45] and Wendel [62, Theorem 2.2(a)].

Lemma 3.1 ([45,62]). Let (Sk,0 ≤ k ≤ n) be a real-valued walk with exchangeable increments, and let Mk,n be the order
statistics defined by (1.1). For each 0 ≤ k ≤ n, the distribution of Mk,n is the convolution of the distributions of maximal
and minimal values over segments of the walk of length k and n − k respectively:

Mk,n
d= Sk + S′

n−k,(3.5)

where S′ is copy of S and independent of S.
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Pollaczek proved Lemma 3.1 for a random walk with i.i.d. increments, and attributed this result to Bohnenblust, Spitzer
and Welsh. Later Wendel [62] and Port [46, Section V] provided more combinatorial proofs. As pointed out by Dassios
[17], Wendel’s argument carries over to any walk with exchangeable increments. Continuous analogs of (3.5) on the
quantile of stochastic processes were studied in [16,17,23].

We also recall a formula for the expectation of max0≤k≤n Sk and min0≤k≤n Sk , which is a simple consequence of
Spitzer’s identity [57, Theorem 3.1] for S a random walk with i.i.d. increments. It is lesser known that this formula also
holds for a walk with exchangeable increments [10,56].

Lemma 3.2 ([56,57]). Let (Sk,0 ≤ k ≤ n) be a real-valued walk with exchangeable increments. Then

ESn =
n∑

k=1

ES+
k

k
and ESn = −

n∑
k=1

ES−
k

k
,(3.6)

where S+
k := max(Sk,0) and S−

k := −min(Sk,0).

Proof of Proposition 1.2. Part (i) is a consequence of the monotone decreasing nature of the convergence (3.2): the
almost sure convergence of W̃k,n to Wk is dominated by W̃k,k , which is easily seen to have a finite pth moment if so does
|X|. The argument for Dk,n is similar.

For part (ii), by Lemma 3.1 and Lemma 3.2, we have for any distribution of increments X with E|X| < ∞,

EMk,n =
k∑

j=1

E(S+
j )

j
−

n−k∑
j=1

E(S−
j )

j
,(3.7)

and hence by differencing

EDk,n = ES+
k

k
+ ES−

n−k+1

n − k + 1
.(3.8)

The formula (3.8) implies that EDn−k+1,n = EDk,n, which is consistent with the reversibility of spacings (1.7). The
conclusion of part (ii) follows from (3.8) and the well known fact [20, Section 4.7] that Sn/n is a reversed martingale so
S−

n−k+1/(n − k + 1) converges as n → ∞ both almost surely and in L1 to E(X|E)−. Moreover, if E(X|E) = 0 almost

surely and EX2 < ∞, then EDk = ES+
k /k. Note that E(S+

k /
√

k) = E[E(S+
k /

√
k|E)]. The asymptotics (1.10) follows as

in the i.i.d. case by de Finetti’s theorem and the dominated convergence theorem since E(S+
k /

√
k|E) ≤

√
E(S2

k /k|E) =√
E(X2|E). �

3.3. Proof of Corollary 1.4

Recall from Section 2 that G
↑
1 (resp. G

↓
1 ) is the future minimum time of S↑ (resp. the future maximum time of S↓). For

w > 0, we have:

P(W1 > w) = P
(
S

↑
G

↑
1

> w,−S
↓
G

↓
1

> w
)

= P
(
S

↑
G

↑
1

> w
)
P
(−S

↓
G

↓
1

> w
)
,(3.9)

where the first equality is by the construction in Theorem 1.1, and the second equality is due to the independence of the
Feller chains (S↑, S↓) of a random walk. Further by Proposition 2.3 (Tanaka’s construction of Feller’s chains of a random
walk),

S
↑
G

↑
1

d= Sτ+ and S
↓
G

↓
1

= Sτ−0 .(3.10)

Combining (3.9) and (3.10) yields the equation (1.13).
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3.4. Proof of Proposition 1.6

Recall the definition of M>n from (3.3), and it follows from the coupling bound (3.4) that

TV(K,n) ≤ P(M>n ≤ WK)

≤ P

(
min

k≥N+
n

S
↑
k ≤ WK

)
+ P

(
min

k≥N−
n

(−S
↓
k

)≤ WK

)
.

For k ≥ 1, let W
↓
k := Mk({−S

↓
n , n ≥ 0}) be the kth smallest element in the chain −S↓. By definition, for each finite K we

have WK ≤ W
↓
K almost surely. Therefore,

P

(
min

k≥N+
n

S
↑
k ≤ WK

)
≤ P

(
min

k≥N+
n

S
↑
k ≤ W

↓
K

)
.(3.11)

By Theorem 1.3, the two Feller chains S↑ and S↓ are independent, and so are mink≥N+
n

S
↑
k and W

↓
K . Thus, the key to the

analysis of (3.11) is to bound P(mink≥N+
n

S
↑
k ≤ x) for any fixed x > 0. Introduce an auxiliary quantity A(n) such that

A(n) → ∞ and A(n)/
√

n → 0 as n → ∞,

which we will determine later. Note that

P

(
min

k≥N+
n

S
↑
k ≤ x

)
≤ P

(
S

↑
N+

n
≤ A(n)

)+ P

(
S

↑
N+

n
> A(n), min

k≥N+
n

S
↑
k ≤ x

)
.(3.12)

Now we treat the two terms on the r.h.s. of (3.12) separately. First by Lemma 2.1, S
↑
N+

n

d= max0≤k≤n Sk . By the KMT

embedding [35], there is a coupling between the random walk (Sk, k ≥ 0) and Brownian motion (Bt , t ≥ 0) such that

P

(
max

0≤k≤n
|Sk − Bk| > C1 logn

)
≤ n− 1

2 for some C1 > 0.

As a consequence,

P
(
S

↑
N+

n
≤ A(n)

)= P

(
max

0≤k≤n
Sk ≤ A(n)

)
≤ n− 1

2 + P

(
max

0≤k≤n
Bk ≤ C1 logn + A(n)

)
≤ n− 1

2 + C2n
− 1

2
(
logn + A(n)

)≤ C3n
− 1

2
(
logn + A(n)

)
,(3.13)

for some C2,C3 > 0. Now let τ
↑
A(n) := inf{k : S

↑
k > A(n)} the first time at which the upward Feller chain S↑ enters

(A(n),∞). It is easy to see that {S↑
N+

n
> A(n),mink≥N+

n
S

↑
k ≤ x} ⊂ {τ↑

A(n) < ∞,min
k≥τ

↑
A(n)

S
↑
k ≤ x}. By conditioning on

the value of S
↑
τ↑ , we get

P

(
S

↑
N+

n
> A(n), min

k≥N+
n

S
↑
k ≤ x

)
≤ P

(
τ

↑
A(n) < ∞, min

k≥τ
↑
A(n)

S
↑
k ≤ x

)

=
∫ ∞

A(n)∨x

P

(
min

k≥τ
↑
A(n)

S
↑
k ≤ x|S↑

τ
↑
A(n)

= y
)
P
(
τ

↑
A(n)

< ∞, S
↑
τ

↑
A(n)

∈ dy
)
.

According to [12, Lemma 4.1 & A.1],

P

(
min

k≥τ
↑
A(n)

S
↑
k ≤ x|S↑

τ
↑
A(n)

= y
)

= h↑(y) − h↑(y − x)

h↑(y)
,
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where h↑(·) is defined in Theorem 1.3. It is also known (see e.g. [9, p. 2155]) that h↑(·) is the renewal function of the
ladder height Sτ+ . By subadditivity of the renewal function, we have h↑(y) − h↑(y − x) ≤ h↑(x). Since E|X|2 < ∞, it
follows from the key renewal theorem that h↑(y) ∼ C4y as y → ∞ for some C4 > 0. The above observations imply that

P

(
S

↑
N+

n
> A(n), min

k≥N+
n

S
↑
k ≤ x

)
≤ C5h

↑(x)A(n)−1,(3.14)

for some C5 > 0. Combining (3.12), (3.13) and (3.14) yields for x > 0,

P

(
min

k≥N+
n

S
↑
k ≤ x

)
≤ C3n

− 1
2
(
logn + A(n)

)+ C5h
↑(x)A(n)−1.(3.15)

By taking A(n) = n
1
4 (which optimizes the right side of (3.15) relative to A(n)), we get

P

(
min

k≥N+
n

S
↑
k ≤ x

)
≤ C6

(
1 + h↑(x)

)
n− 1

4 ,(3.16)

for some C6 > 0. Now by (3.11) and (3.16), we have

P

(
min

k≥N+
n

S
↑
k ≤ WK

)
≤ C6

(
1 +Eh↑(W↓

K

))
n− 1

4 .

Finally, by Proposition 1.2(i) and the fact that h↑(y)/y2 → 0 as y → ∞, we get Eh↑(W
↓
K) < ∞. A similar bound is

derived for P(mink≥N−
n
(−S

↓
k ) ≤ WK), which yields the desired result.

4. Order statistics of simple symmetric random walks

This section describes the limit process (Wk, k ≥ 0) of shifted order statistics (Mk,n − M0,n,0 ≤ k ≤ n) derived from
the path of a random walk with symmetric ±1 increments; that is P(Xi = 1) = P(Xi = −1) = 1/2. According to Theo-
rem 1.1, (Wk, k ≥ 0) is the increasing rearrangement of the two Feller chains (S

↑
k , k ≥ 1) and (−S

↓
k , k ≥ 0). The key to

the analysis is the occupation counting process (L	, 	 = 0,1, . . .) defined by

L	 :=
∞∑

k=0

1(Wk = 	) = L
↑
	 + L

↓
	 ,(4.1)

where

L
↑
	 :=

∞∑
k=1

1
(
S

↑
k = 	

)
and L

↓
	 :=

∞∑
k=0

1
(−S

↓
k = 	

)
.(4.2)

Note the convention that the minimal order statistic W0 = 0 is included as a contribution to the count L
↓
0 ≥ 1 of values

attaining the minimum, while the 0 value is deliberately excluded as a contribution to L
↑
0 = 0.

For the simple symmetric random walk the general formula (1.9) for EDk simplifies to

EDk = ES+
k

k
= 1

2
u�k/2�,(4.3)

where um := P(S2m = 0) =
(

2m

m

)
2−2m ∼ 1√

πm
as m → ∞, is the central term in the Binomial(2m,1/2) distribution.

The second equality in (4.3) follows from Kemperman’s formula and the reflection principle. By Kemperman’s formula
and time reversal,

jP(Sk = j) = kP(S1 < j, . . . , Sk−1 < j,Sk = j)

= kP(S1 > 0, . . . , Sk−1 > 0, Sk = j).
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By summing both sides over j > 0, we get ES+
k /k = P(S1 > 0, . . . , Sk > 0) which equals to 1

2u�k/2� by the reflection
principle (see e.g. [25, p. 77, (3.2)]). For θ > 0, recall the well known identity:

(1 − z)−θ = 1 +
∑
k≥1

(θ)k↑
k! zk,

where (θ)k↑ := ∏k−1
i=0 (θ + i) is the Pochhammer function. Specializing to θ = 1

2 yields the generating function∑∞
k=0 ukz

k = (1 − z)−1/2, which then gives easily the generating function

∞∑
k=1

EDkz
k = 1

2

(
(1 + z)

(
1 − z2)−1/2 − 1

)
.(4.4)

Since the increments Xk of (Sk, k ≥ 0) are restricted to ±1, the increments Dk of (Wk, k ≥ 0) are restricted to be 0 or 1.
Thus Dk is an indicator random variable, more precisely

Dk =
∞∑

j=0

1(ηj = k) = 1(ηj = k for some j ≥ 0) for k = 1,2, . . . ,(4.5)

where

ηj :=
j∑

	=0

L	 =
∞∑

k=1

1(Wk ≤ j),(4.6)

is the number of all order statistics at or below level j . Formula (4.5) looks as if a process of renewal indicators is
constructed from the times ηj of renewals generated by spacings L	 in a delayed renewal process [4, Chapter VI]. So
the formula (4.3) for the indicators Dk defined by (4.5) parallels the well known role of uk = P(S2k = 0) in the renewal
indicator process (1(S2k = 0), k ≥ 0) whose spacings are independent copies of the time of first return to 0 for the original
random walk (see e.g. [25, Chapter XIII]). However, the stochastic structure of the (L	, 	 ≥ 0) is more complex than the
independent random spacings in a renewal process. See also [21,40,41,47,49] for the distribution of order statistics and
related functionals of simple random walks.

Call a process (Zk, k ≥ 0) a branching process with immigration distribution F0 and offspring distribution F1 if
(Zk, k ≥ 0) is a Markov chain with

(Zk+1|Z0, . . . ,Zk)
d= Y0 +

Zk∑
i=1

Yi, k ≥ 0,

where X0,X1,X2, . . . are independent, with Y0 distributed according to F0 and Yi for i ≥ 1 distributed according to F1.
In the present setting, Y0 will always be a constant, either 0 or 1 or 2, in which case (Zk, k ≥ 0) is said to have either
no immigration or single or double immigration as the case may be. We say Y has the Geo0(p) distribution on {0,1, . . .}
if P(Y = k) = p(1 − p)k for k ≥ 0, and Y has the Geo1(p) distribution on {1,2, . . .} if P(Y = k) = p(1 − p)k−1 for
k ≥ 1. The following theorem summarizes some results underlying the construction of the occupation counting process
(L	, 	 ≥ 0).

Theorem 4.1. Let (L	, 	 ≥ 0) be the occupation counting process defined by (4.1). Then

(i) L may be represented as

L	 = Z	−1 + Z	 − 2, 	 ≥ 0,(4.7)

where (Z	, 	 = −1,0,1, . . .) is a branching process with double immigration and Geo0(1/2) offspring distribution, with
the convention Z−1 = 1. In particular, L0 = Z0 − 1 has Geo1(1/2) distribution:

P(L0 = k) = P(Z0 = k + 1) = 2−k for k ≥ 1.(4.8)
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(ii) For each 	 ≥ 1, the conditional distribution of L	 given L0 = k is that of

G0(	) + Gk(	) +
k−1∑
i=1

Bi(	)Gi(	),(4.9)

where the (Gi(	),0 ≤ i ≤ k) are independent Geo1(
1
2	

) variables, and the (Bi(	),1 ≤ i ≤ k − 1) are k − 1 independent

Bernoulli( 1
	
) variables, independent also of the (Gi(	),0 ≤ i ≤ k).

(iii) For each k ≥ 1, ηk defined by (4.6) has the generating function

Ezηk = 1

Vk(1/z)Vk+1(1/z)
,(4.10)

where Vk is the sequence of Chebyshev polynomials of the third kind, defined by the Chebyshev recurrence

Vk(x) := 2xVk−1(x) − Vk−2(x), k ≥ 2,(4.11)

with initial condition V0(x) := 1 and V1(x) := 2x − 1.

To prove Theorem 4.1, we need the following two lemmas regarding the Feller chain S↑ derived from a simple sym-
metric random walk.

Lemma 4.2 ([34]). Let S↑ and S↓ be the upward and downward Feller chains derived from a simple symmetric random
walk S. For 	 ≥ 0, let

Z
↑
	 :=

∞∑
k=0

1
(
S

↑
k = 	,S

↑
k+1 = 	 + 1

)
,Z

↓
	 :=

∞∑
k=0

1
(−S

↓
k = 	,−S

↓
k+1 = 	 + 1

)
,(4.12)

be the total number of upcrossings of S↑ and −S↓ from 	 to 	 + 1. Then we have:

(i) The sequence (Z
↑
	 , 	 ≥ 0) is a branching process with single immigration and Geo0(1/2) offspring distribution.

(ii) The sequence (Z
↓
	 , 	 ≥ 0) is a branching process with single immigration and Geo0(1/2) offspring distribution,

which evolves independently of Z↑, but with a time shift forward by one step. So Z
↓
0 starts with the Geo1(1/2) distribution.

Lemma 4.3. For k ≥ 1 let τk := inf{n ≥ 1 : Sn = k} be the first passage time to level k > 0 for the simple symmetric
random walk S. Let N0+(n) := ∑n

j=1 1(Sj ≥ 0) be the number of non-negative steps of the walk up to time n, let τ k :=
inf{n ≥ 1 : Sn − Sn = k} be the first passage time to level k for the reflected random walk (Sn − Sn,n ≥ 0), and let

η
↑
k :=∑∞

j=1 1(S
↑
j ≤ k) be the total occupation time of levels 1 through k for the upward Feller chain. Then we have:

(i) The three random variables N0+(τk), τ k and η
↑
k have identical distributions.

(ii) The common distribution of these random variables has the generating function

gk(z) := EzN0+(τk) = Ezτk = Ezη
↑
k = 1

Vk(1/z)
,(4.13)

where Vk is the sequence of Chebyshev polynomials of the third kind defined by (4.11).

Proof. (i) It follows from [43] that there is the identity in distribution:(
S

↑
j ,0 ≤ j ≤ σk

) d= (k − Sτk−j ,0 ≤ j ≤ τk),

where σk := max{j, S↑
j = k} is the last time at which S↑ visits the state k. As a result, N0+(τk) = ∑τk−1

j=0 1(k − Sτk−j ≤
k)

d=∑σk−1
j=0 1(S

↑
j ≤ k) = η

↑
k , where the last equality follows from the fact that S↑ does not visit the state k after time σk .

The further equality in distribution of N0+(τk) and τ k follows easily from the stronger result that if ν0 := 0 and νk for
k > 0 is the first time n such that N0+(n) = k, then (Sνk

, k ≥ 0), which is just the subsequence of non-negative terms of
S, has the same distribution as (Sn − Sn,n ≥ 0). So each process is just simple symmetric random on the non-negative
integers, in which the transition probabilities out of state 0 are P(0,0) = P(0,1) = 1/2.
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(ii) Let gk(z) := EzN0+(τk). Let (Fk, k ≥ 0) be the filtration of the random walk S. Note that Sτk−1+1 = k or k − 2 with
equal probabilities 1

2 . By the strong Markov property of S at time τk−1, we have:

(
N0+(τk)|Fτk−1

)=

⎧⎪⎨⎪⎩
N0+(τk−1) + 1 with probability

1

2
,

N0+(τk−1) + 1 + N0+(τk−2:k) with probability
1

2
,

where N0+(τk−2:k) is the number of non-negative steps of the walk starting at k − 2 until it first visits k, independent of
N0+(τk−1). Therefore, gk(z) = 1

2zgk−1(z) + 1
2zgk−1(z)EzN0+(τk−2:k). Further by the strong Markov property of S at time

τk−2, we have gk−2(z)EzN0+(τk−2:k) = gk(z). By eliminating the term EzN0+(τk−2:k), we get the recursion

gk(z) = gk−1(z)z

(
1

2
+ 1

2

gk(z)

gk−2(z)

)
for k ≥ 2,(4.14)

with the convention that g0(z) := 1 and g−1(z) := 1 (so g1(z) = z
2−z

). Let Vk(x) := 1/gk(1/x). Then (4.14) reduces
easily to (4.11), with V0(x) = 1 and V1(x) = 2x − 1. �

Here we do not use explicitly any embedding for the simple symmetric walk. Nevertheless, Lemmas 4.2 and 4.3 are
reminiscent of Ray–Knight theorems and Williams’ decomposition, which have been proved via random walk embedding.

Proof of Theorem 4.1. Part (i) follows from Lemma 4.2, and the path construction

L
↑
	 = Z

↑
	−1 + Z

↑
	 − 1 and L

↓
	 = Z

↓
	−1 + Z

↓
	 − 1, 	 ≥ 0,(4.15)

with the conventions Z
↑
−1 = 0 and Z

↓
−1 = 1 for 	 = 0.

Part (ii) can be read from Révész [50, Lemma 12.5]. For S a simple symmetric walk, let τ0 := inf{n ≥ 1 : Sn = 0} be
the first time at which S returns to 0, and ξ	 :=∑τ0

k=1 1(Sk = 	) be the number of visits to the state 	 ≥ 0 up to time τ0. It
was shown that

(
ξn−	| max

0≤j≤τ0
Sj = n, ξn = k

)
d= G0(	, n) + Gk(	,n) +

k−1∑
i=1

Bi(	,n)Gi(	,n),(4.16)

where the (Gi(	,n),0 ≤ i ≤ k) are independent Geo1(
n

2	(n−	)
) variables, and the (Bi(	, n),1 ≤ i ≤ k − 1) are k − 1 inde-

pendent Bernoulli(1− (1− 1
	
) n
n−1 ) variables, independent also of the (Gi(	,n),0 ≤ i ≤ k). Given that max0≤j≤τ0 Sj = n,

the random walk excursion is constructed by joining back to back independently a positive walk running till it first hits
n, and a nonnegative walk running till it first hits n. According to [9], as n → ∞, a walk conditioned to hit n before 0
converges in distribution to S↑ and a walk conditioned to hit n before −1 converges in distribution to −S↓. Thus, near
max0≤j≤τ0 Sj = n → ∞, the random walk excursion is decomposed into (S↑,−S↓). Consequently, the left side of (4.16)
converges in distribution to (L	|L0 = k). Moreover, Gi(	,n) and Bi(	,n) converge in distribution to Gi(	) and Bi(	)

respectively, hence the conclusion.

For part (iii), let η
↑
k :=∑∞

j=1 1(S
↑
j ≤ k). It is easy to see that ηk

d= η
↑
k + η̃

↑
k+1, where η̃

↑
k+1 is a copy of η

↑
k+1, indepen-

dent of η
↑
k . It suffices to apply Lemma 4.3 to conclude. �

5. Order statistics of Gaussian walks

This section provides further analysis of limiting order statistics of a random walk with i.i.d. Gaussian increments; that is

P(Xi ∈ dx) = (2πσ 2)− 1
2 exp(− x2

2σ 2 ) dx for some σ 2 > 0. As discussed in the Introduction, a random walk (Sk,0 ≤ k ≤ n)

with Gaussian increments is embedded in a Brownian motion (B(t), t ≥ 0) via Sk = B(σk). There is one more variable
to be entered into the mix; that is

M−,n := min
0≤t≤σn

B(t).(5.1)

So by definition, M−,n ≤ M0,n ≤ · · · ≤ Mn,n are the ranked values of Brownian motion on [0, σ ] evaluated at a grid
of n + 2 fixed times 0, σ,2σ, . . . , σn at which the random walk Sk := B(σk) is embedded, and one extra random time
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α(σn) := inf{t ≤ σn : B(t) = B(σn)}, the almost surely unique random time at which B attains its minimum on [0, σn].
It is a key observation that the structure of limit distributions for differences of order statistics Mk,n −M0,n for k = O(

√
n)

as n → ∞ is easily understood by first considering the differences Mk,n − M−,n, from which the Mk,n − M0,n can be
recovered using Theorem 5.1 as

Mk,n − M0,n = (Mk,n − M−,n) − (M0,n − M−,n).(5.2)

The distribution of M0,n − M−,n was studied in Asmussen, Glynn and Pitman [5] in the Gaussian case, where
M0,n − M−,n was interpreted as the discretization error in approximating a reflecting random walk by a natural Euler
approximation scheme. The key idea was that when the Gaussian random walk S is embedded in Brownian motion B

as Sk = B(σk) for 0 ≤ k ≤ n, and n is large, the discretization error M0,n − M−,n is with overwhelming probability
determined by the behavior of B in a time window of width o(n) around the minimum time α(σn). According to ba-
sic decompositions of a Brownian path at a local minimum, due to Williams [64] and Denisov [19], after centering at
(α,B(α)) for α = α(σn) the height of the Brownian path above its minimum value becomes locally well approximated
by two independent copies of a BES(3) process, say (R3(t), t ≥ 0), and (R̂3(t), t ≥ 0), joined back to back, call it the
Brownian valley:

R̆(t) := R3(t)1(t ≥ 0) + R̂3(t)1(t < 0), for − ∞ < t < ∞.(5.3)

It is easily shown that for each fixed ε > 0, there exists a(ε) > 0 and n(ε) so that for n ≥ n(ε) the probability that the
Gaussian walk attains its minimum over {0,1, . . . , n} at a time k with |k − α(n)| < a(ε) is at least 1 − ε. As shown in [5,
Theorem 1], it follows the discretization error for the standard Gaussian random walk S is described by

M0,n − M−,n = min
0≤k≤n

Sk − min
0≤t≤n

Bt
d−→ min

k∈Z R̆(U + k)(5.4)

with U Uniform[0,1] and independent of R̆. The same argument can establish more, which is stated in the following
theorem.

Theorem 5.1. Let (Sk, k ≥ 0) be a Gaussian random walk, for increments with variance σ 2. For 0 ≤ k ≤ n, let Mk,n be
the sequence of order statistics defined by (1.1) of the n-step walk (Sk,0 ≤ k ≤ n). Then for every m = 1,2, . . ., there is
the convergence of joint distributions

(Mk,n − M−,n,0 ≤ k ≤ m)
d−→ (σMk,∞,0 ≤ k ≤ m),(5.5)

where Mk,∞ := Mk({R̆(U + j), j ∈ Z}) is the sequence of order statistics of the values {R̆(U + j), j ∈ Z}, and U with
uniform distribution on [0,1] is independent of R̆. Moreover, the distribution of M0,∞ := mink∈Z R̆(U + k) is given by

P(M0,∞ > a) =
∫ 1

0
Ga(u)Ga(1 − u)du,(5.6)

with

Ga(u) = Ka(u)

∞∏
k=0

Ha(k + u)

Ka(k + u)
,(5.7)

where

Ka(t) =
√

2

πt
ae− a2

2t + erfc

(
a√
2t

)
,(5.8)

and

Ha(t) = a√
2π(1 + t)

e
− a2

2(1+t)

(
erfc

(
a√

2t (t + 1)

)
+ erfc

(
a(2t + 1)√
2t (t + 1)

))
+ 1

π
√

t

(
e− a2

2t − e− a2(4t+1)
2t

)+ a√
2πt

e− a2
2t
(
1 + erfc(

√
2a)

)+ erfc

(
a√
2t

)
(5.9)

+ erfc

(
a√

2(t + 1)

)
− T

(
a√
t + 1

,
1√
t

)
− T

(
a√
t + 1

,
2t + 1√

t

)
− T

(
a√
t
,2

√
t

)
.
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Here erfc(x) := 1 − 2√
π

∫ x

0 e−t2
dt is the complementary error function, and T (h, a) is Owen’s T function defined by

T (h, a) := 1

2π

∫ a

0

e
1
2 h2(1+x2)

1 + x2
dx.(5.10)

Note that in the Gaussian case, the limit in distribution conjectured by Schehr and Majumdar [52] for Dk and Wk

can be read from the above theorem, with the process (Dk, k ≥ 1) identified as Dk = Mk,∞ − Mk−1,∞, and the partial
sums (Wk, k ≥ 0) identified as Wk = Mk,∞ − M0,∞. It is a key point of the present approach that the enlargement of the
probability space to include an auxilliary Brownian motion enables a simple description of the limit process, involving a
single additional variable M0,∞ which places the limiting order statistics in their natural environment, which is a process
of random sampling of points in the Brownian valley. See also [14,29] for related works on Lévy processes and random
walks with heavy tailed increments.

As discussed in [5], in the Gaussian case, it is a difficult problem to describe the even the limit distribution of the M0,∞
in a simple way, see e.g. formula (5.6)–(5.9). While bounds on the distribution of M0,∞ allow to show that this variable
has finite positive moments of all orders, the only exact result found is the mean:

EM0,∞ = − σ√
2π

ζ(1/2) = 0.5826 · · ·σ,(5.11)

where ζ(·) is the Riemann zeta function. In view of (5.6), we get the following non-trivial identity:∫ ∞

0

∫ 1

0
Ka(u)Ka(1 − u)

∞∏
k=0

Ha(k + u)Ha(k + 1 − u)

Ka(k + u)Ka(k + 1 − u)
duda = − 1√

2π
ζ

(
1

2

)
.(5.12)

Further computations of explicit distributions in this case seem very difficult, and it is interesting to see if further
moments, or the generating function of M0,∞ can be computed by using the product formula (5.6). See also [13,30,31]
for closely related computations of the mean of the ladder height distribution for a Gaussian random walk, which also
involve Riemann’s zeta function.

Proof of Theorem 5.1. The first part of the theorem is a simple consequence of the proof of [5, Theorem 1]. We focus
on the second part of the distribution of M0,∞. The derivation relies on some Bessel process computation, which is of
independent interest. Fix a > 0, we aim to compute

P(M0,∞ > a) := P
(
R3(k + U) > a and R̂3(k + 1 − U) > a,∀k ≥ 0

)
,

where R3 and R̂3 are two independent BES(3) processes. By conditioning on U , we get

P(M0,∞ > a) =
∫ 1

0
P
(
R3(k + u) > a,∀k ≥ 0

) · P(R3(k + 1 − u) > a,∀k ≥ 0
)
du.(5.13)

For u ∈ (0,1), by letting Ga(u) = P(R3(u + k) > a,∀k ∈ N), we get (5.6).
Now we calculate Ga(u). For t > 0, let Ka(t) := P(R3(t) > a) and Ha(t) := P(R3(t + 1) > a,R3(t) > a). By the

Markov property of the BES(3) process, we can express Ga(u) by an infinite product:

Ga(u) = P
(
R3(u) > a

) ∞∏
k=1

P
(
R3(k + u) > a|R3(k − 1 + u) > a

)
,

which leads to (5.7). Recall from [51, Chapter VI.3] the entrance law pt (x) := P(R3(t) ∈ dx)/dx, and the transition
density qt (x, y) := P(R3(t + t0) ∈ dy|R3(t0) = x)/dy of the BES(3) process:

pt(x) =
√

2

πt3
x2 exp

(
−x2

2t

)
, x > 0,(5.14)

qt (x, y) = x−1y√
2πt

[
exp

(
− (y − x)2

2t

)
− exp

(
− (y + x)2

2t

)]
, x, y > 0.(5.15)
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It is easy to see that for t > 0, Ka(t) is given by (5.8). It remains to compute Ha(t) for t > 0. By definition,

Ha(t) = 1

π
√

t3

∫ ∞

a

x exp

(
−x2

2t

)∫ ∞

a

y

[
exp

(
− (y − x)2

2

)
− exp

(
− (y + x)2

2

)]
dy dx.(5.16)

Unfortunately, Mathematica did not provide any simplification for (5.16). Here we simplify (5.16) by hand using some
special functions. First,∫ ∞

a

y

[
exp

(
− (y − x)2

2

)
− exp

(
− (y + x)2

2

)]
dy

= e− 1
2 (a−x)2 − e− 1

2 (a+x)2 +
√

π

2
x erfc

(
a − x√

2

)
+
√

π

2
x erfc

(
a + x√

2

)
.(5.17)

So we need to compute the following integrals:

I :=
∫ ∞

a

x exp

(
−1

2
(a − x)2 − x2

2t

)
dx, II :=

∫ ∞

a

x exp

(
−1

2
(a + x)2 − x2

2t

)
dx,

III :=
∫ ∞

a

x2 exp

(
−x2

2t

)
erfc

(
a − x√

2

)
dx, IV :=

∫ ∞

a

x2 exp

(
−x2

2t

)
erfc

(
a + x√

2

)
dx.

By direct computations, we get

I = a

√
πt3

2(t + 1)3
exp

(
− a2

2(t + 1)

)
erfc

(
a√

2t (t + 1)

)
+ t

t + 1
exp

(
−a2

2t

)
,(5.18)

II = −a

√
πt3

2(t + 1)3
exp

(
− a2

2(t + 1)

)
erfc

(
a(2t + 1)√
2t (t + 1)

)
+ t

t + 1
exp

(
−a2(4t + 1)

2t

)
.(5.19)

Introduce F(x) := − t3/2

2
√

t+1
e
− a2

2(t+1) erfc(− (1+t)x+at/
√

2√
t (t+1)

) − t
2e− x2

t erfc(x + a√
2
). By integration by parts, we get

III/
√

8 = ∫ − a√
2−∞ x2 exp(− x2

t
) erfc(x+ a√

2
) dx = [xF(x)]−

a√
2−∞ −∫ − a√

2−∞ F(x)dx. Note that [xF(x)]−
a√
2−∞ = at3/2√

8(t+1)
e
− a2

2(t+1) ×
erfc( a√

2t (t+1)
) + at√

8
e− a2

2t ,

−
∫ − a√

2

−∞
F(x)dx = t3/2

2
√

t + 1
e
− a2

2(t+1)

∫ − a√
2

−∞
erfc

(
− (1 + t)x + at/

√
2√

t (t + 1)

)
dx

+ t

2

∫ − a√
2

−∞
e− x2

t erfc

(
x + a√

2

)
dx

and ∫ − a√
2

−∞
erfc

(
− (1 + t)x + at/

√
2√

t (t + 1)

)
dx =

√
t

t + 1

[
− a√

2t (t + 1)
erfc

(
a√

2t (t + 1)

)
+ 1√

π
e
− a2

2t (t+1)

]
.

It remains to evaluate
∫ − a√

2−∞ e− x2
t erfc(x + a√

2
) dx. Let (X,Y ) be distributed as independent standard normal (i.e. bivariate

normal with mean 0, variance 1 and correlation 0). We have∫ − a√
2

−∞
e− x2

t erfc

(
x + a√

2

)
dx = √

πt

∫ −a

∞
1√
2πt

e− x2
2t erfc

(
x + a√

2

)
dx

= √
πtP(X > a/

√
t, Y + √

tX > a).

It is well known [42, (2.1)] that for (X,Z) a bivariate normal with mean 0, variance 1 and correlation r , P(X > h,Z >

k) = 1
2 (erfc(h/

√
2) + erfc(k/

√
2)) − T (h, k−rh

h
√

1−r2
) − T (k, h−rk

k
√

1−r2
), where T (h, a) is defined by (5.10). Specializing to
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the case r = √
t/(t + 1), h = a/

√
t and k = a/

√
t + 1, we get∫ − a√

2

−∞
e− x2

t erfc

(
x + a√

2

)
dx =

√
πt

2

(
erfc

(
a√
2t

)
+ erfc

(
a√

2(t + 1)

))
− √

πtT

(
a√
t + 1

,
1√
t

)
.

Combining all the above calculations, we obtain

III = a

√
t5

(t + 1)3
e
− a2

2(t+1) erfc

(
a√

2t (t + 1)

)
+
(

at +
√

2t2

√
π(t + 1)

)
e− a2

2t

+
√

πt3

2

(
erfc

(
a√
2t

)
+ erfc

(
a√

2(t + 1)

))
−
√

2πt3T

(
a√
t + 1

,
1√
t

)
.(5.20)

Similarly, we get

IV = a

√
t5

(t + 1)3
e
− a2

2(t+1) erfc

(
a(2t + 1)√
2t (t + 1)

)
+ at erfc(

√
2a)e− a2

2t −
√

2t2

√
π(t + 1)

e− a2(4t+1)
2t

+
√

πt3

2

(
erfc

(
a√
2t

)
+ erfc

(
a√

2(t + 1)

))
−
√

2πt3

(
T

(
a√
t + 1

,
2t + 1√

t

)
+ T

(
a√
t
,2

√
t

))
.(5.21)

Bringing all the computations together, we obtain Ha(t) = 1
πt3/2 (I − II +

√
π
2 III +

√
π
2 IV), which yields (5.9). �
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